DISBIOSE DO TRATO GASTROINTESTINAL E DOENÇA DE ALZHEIMER
revisão integrativa
DOI:
https://doi.org/10.21116/is.v1i1.954Palavras-chave:
Microbiota intestinal, Doença de Alzheimer, NeuroinflamaçãoResumo
Resumo: Esta revisão integrativa teve por objetivo verificar as associações possíveis entre disbiose intestinal e Doença de Alzheimer (DA). Foi realizada busca sistematizada nas bases de dados Medline, Lilacs, PubMed e Scielo, com os termos Alzheimer’s disease, Gut microbiota e Neuroinflammation. A patogênese da DA apresenta alta relação com a imunidade. Os pacientes com DA têm diferenças significativas na taxonomia microbiana intestinal, com diminuição de inúmeras bactérias Gram-positivas, e aumento de várias Gram-negativas. Dentre os mecanismos envolvidos na patogênese estão: liberação de moduladores inflamatórios, proteína beta-amilóide (Aβ) e outras substâncias neurotóxicas, que induzem a neuroinflamação; aumento da permeabilidade das membranas no trato gastrointestinal e na barreira hematoencefálica, facilitando o aumento da agregação Aβ e lipopolissacarídeos, redução de ácidos graxos de cadeia curta (SCFAs) e baixos níveis de ácido γ-aminobutírico (GABA); excitotoxicidade do glutamato associada à neurodegeneração tardia; diferença nos níveis de aminoácidos e SCFAs, associando o APOE4 à DA. Conclui-se que os principais mecanismos de associação entre disbiose e DA envolvem acumulado de Aβ e emaranhados neurofibrilares, astrogliose associada à ativação microglial, neuroinflamação, estresse oxidativo e lesão de neurônios colinérgicos. E, apesar da disbiose ser associada a fatores genéticos, tem aumentado o número de estudos relacionando-a a fatores comportamentais como dieta, uso excessivo de antibióticos e disfunções metabólicas passíveis de controle.
Referências
ANGIOLILLO, A. et.al. Altered Blood Levels of Anti-Gal Antibodies in Alzheimer’s Disease: A New Clue to Pathogenesis? Life v.11, n. 538, p. 1-10, 2021. DOI:10.3390/life11060538
APOSTOLOVA, L. G. Alzheimer disease. Continuum, American Academy of neurology, v. 22, n. 2, p.419-434, 2016. DOI: 10.1212/CON.0000000000000307.
BREIJYEH, Z.; KARAMAN, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. v. 25, n. 5789, p. 1-28, 2020. DOI:10.3390/molecules25245789.
CALSOLARO, V.; EDISON, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s & Dementia, p. 1-14, may 2016. DOI:10.1016/j.jalz.2016.02.010
CHANG, C-H.; LIN, C-H.; LANE, H-Y. D-glutamate and Gut Microbiota in Alzheimer’s Disease. Int. J. Mol. Sci., v. 21, n. 2676, p.1-17, 2020. DOI:10.3390/ijms21082676
CHIDAMBARAM, S. B. et.al. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle. Pharmacology & Therapeutics, [S.L.], p. 107988, set. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.pharmthera.2021.107988.
CRYAN, J. F. et.al. The microbiota-gut-brain axis. Physiol Rev, v.99, p. 1877–2013, 2019. DOI:10.1152/physrev.00018.2018
CUBINKOVA, V. et.al. Alternative hypotheses related to Alzheimer’s disease. Bratisl Med J. v. 119, n. 4, p. 210-2016, 2018. DOI: 10.4149/BLL_2018_039
DOULBERIS, M. et.al. Alzheimer’s disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement. Int. J. Neurosc., p. 289-301, 2020. DOI: 10.1080/00207454.2020.1738432
EKUNDAYO, T. C. et.al. Microbial Pathogenesis and Pathophysiology of Alzheimer’s Disease: A Systematic Assessment of Microorganisms’ Implications in the Neurodegenerative Disease. Front. Neurosci. v.15, n.648484, p. 1-14, 2021. DOI: 10.3389/fnins.2021.648484
EMRANI, S. et.al. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alzheimer's Research & Therapy, v. 12, n.141, p. 1-19, 2020. DOI: 10.1186/s13195-020-00712-4
FARZI, A.; FRÖHLICH, E. E.; HOLZER, P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics v. 15, n.1, p. 5–22, 2018. DOI: 10.1007/s13311-017-0600-5
GIOVANNINI, M. G. et.al. The Microbiota–Gut–Brain Axis and Alzheimer Disease. From Dysbiosis to Neurodegeneration: Focus on the Central Nervous System Glial Cells. J Clin Med. v. 10, p. 2358, 2021. DOI:10.3390/jcm10112358
GRUENDLER, R. et.al. Nutraceutical Approaches of Autophagy and Neuroinflammation in Alzheimer’s Disease: A Systematic Review. Molecules. v. 25, p. 6018, 2020. DOI:10.3390/molecules25246018.
HAMPEL, H. et.al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. BRAIN, v. 141, p. 1917–1933, 2018a. DOI:10.1093/brain/awy132.
HOLZER, P.; REICHMANN, F.; FARZI A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. v. 46, n. 6, p. 261-274, 2012. DOI: 10.1016/j.npep.2012.08.005
HUANG, R. Gut Microbiota: A Key Regulator in the Effects of Environmental Hazards on Modulates Insulin Resistance. Front. Cell. Infect. Microbiol. v.11, n. :800432, 2022. DOI: 10.3389/fcimb.2021.800432
HUNG, C-C. et.al. Gut microbiota in patients with Alzheimer’s disease spectrum: a systematic review and meta-analysis. Aging, v. 14, n. 1, p. 477-496, 2022. DOI: 10.18632/aging.203826.
JANSSENS, Y. et.al. PapRIV, a BV 2 microglial cell activating quorum sensing peptide. Scientific reports, v.11, n.10723, 2021. DOI: 10.1038/s41598-021-90030-y
JIANGA, C. et.al. The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, v. 58, p. 1-15, 2017. DOI: 10.3233/JAD-161141
JU, Y.; TAM, K. Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regeneration Research, v. 17, n. 3, p. 543-549, march 2022. DOI: 10.4103/1673-5374.320970.
KHLEVNER, J.; PARK, Y.; MARGOLIS, K. G. Brain–Gut Axis Clinical Implications. Gastroenterol Clin North Am, v. 47, p. 727–739, dez. 2018. DOI: 10.1016/j.gtc.2018.07.002.
LANE, C. A.; HARDY, J.; SCHOTT, J. M. Alzheimer’s disease. European Journal of Neurology, v. 25, p. 59–70, 2018. DOI:10.1111/ene.13439
MAYER, E. A.; TILLISCH, K.; GUPTA, A. Gut/brain axis and the microbiota. The Journal of Clinical Investigation, v.125, p.926–938, 2015. DOI:10.1172/JCI76304.
NAGU, P. et.al. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer’s Disease. J. Mol. Neuroscience, v. 71, p. 1436-1455, 2021. DOI: 10.1007/s12031-021-01829-3
PALEY, E. L. Discovery of Gut Bacteria Specific to Alzheimer’s Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis. v. 72, n. 1, p. 319-355, 2019. DOI: 10.3233/JAD-190873.
REILLY, A. M. et.al. Metabolic Defects Caused by High-Fat Diet Modify Disease Risk through Inflammatory and Amyloidogenic Pathways in a Mouse Model of Alzheimer’s Disease. Nutrients, v. 12, n. 2977, 2020. DOI:10.3390/nu12102977
ROTH, W. et.al. Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, v.22, 2021. DOI: 10.3390/ijms22062973
TICINESI, A. et.al. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clinical Interventions in Aging, v. 13, p. 1497–1511, 2018. https://www.dovepress.com/ by 5.62.155.21 on 15-Sep-2018
TRAN, T. T. T. et.al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. The FASEB Journal, v. 33, p. 1-11, 2019. DOI: 10.1096/fj.201900071R
WEISS, G. A.; HENNET, T. Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, mar 2017. DOI: 10.1007/s00018-017-2509-x
WIĘCKOWSKA-GACEK, A. et.al. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Research Reviews, v. 70, n. 101397, 2021. DOI: 10.1016/j.arr.2021.101397
ZHANG, Y.; GENG, R.; TU, Q. Gut microbial involvement in Alzheimer's disease pathogenesis. Aging, v. 13, n. 9, p. 13359-13371, 2021. DOI: 10.18632/aging.202994
ZHAO, Y.; JABER, V.; LUKIW, W. J. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol. v. 7, art. 318. Jul 2017. DOI: 10.3389/fcimb.2017.00318.